

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

MODELING, SIMULATION AND IMPLEMENTATION OF A
NON-COHERENT BINARY-FREQUENCY-SHIFT-KEYING
(BFSK) RECEIVER-TRANSMITTER INTO A FIELD

PROGRAMMABLE GATE ARRAY (FPGA)

by

Juan P Svenningsen

September 2005

 Thesis Advisor: Herschel Loomis
 Co-Advisor: Frank Kragh

Approved for public release; distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No.
0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gath-
ering and maintaining the data needed, and completing and reviewing the collection of informa-
tion. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington headquarters Ser-
vices, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2005

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Modeling, Simulation and Imple-
mentation of a Non-Coherent Binary-Frequency-Shift-
Keying (BFSK) Receiver-Transmitter into a Field Program-
mable Gate Array (FPGA)
6. AUTHOR(S) Juan P Svenningsen

5. FUNDING NUMBERS
M6890904POH9023

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Marine Corps Tactical Systems Support Activity
Camp Pendelton, CA

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do
not reflect the official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
 This thesis presents the use of a field programmable gate array (FPGA) to imple-
ment a non-coherent binary-frequency-shift-keyed receiver-transmitter (BFSK-RT) that
simulates the modulation of the SINCGARS radio, the RT-1523C. An FPGA successfully,
and with very few resources, implemented the desired modulation and demodulation.
Topics covered include FPGA history, the hardware and software utilized, a summary of
the SINCGARS RT-1523C characteristics, the BFSK-RT on FPGA design procedure and the
design results.

15. NUMBER OF
PAGES

108

14. SUBJECT TERMS SINCGARS, RT-1523C, Field Programmable Gate Array
(FPGA), non-coherent receiver design, binary-frequency-shift-keying
(BFSK) modulator design, on-off keying (OOK), digital communications

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited.

MODELING, SIMULATION AND IMPLEMENTATION OF A NON-COHERENT
BINARY-FREQUENCY-SHIFT-KEYING (BFSK) RECEIVER-TRANSMITTER

INTO A FIELD PROGRAMMABLE GATE ARRAY (FPGA)

Juan P Svenningsen
Captain, United States Marine Corps

B.S., United States Naval Academy, 1999

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2005

Author: Juan P Svenningsen

Approved by: Professor Herschel Loomis

Thesis Advisor

Professor Frank Kragh
Thesis Co-Advisor

Professor Jeffrey B. Knorr
Chairman, Department of Electrical and Com-
puter Engineering

 iii

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis presents the use of a field programmable

gate array (FPGA) to implement a non-coherent binary-

frequency-shift-keyed receiver-transmitter (BFSK-RT) that

simulates the modulation of the SINCGARS radio, the RT-

1523C. An FPGA successfully, and with very few resources,

implemented the desired modulation and demodulation. Top-

ics covered include FPGA history, the hardware and software

utilized, a summary of the SINCGARS RT-1523C characteris-

tics, the BFSK-RT on FPGA design procedure and the design

results.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. SINGLE CHANNEL GROUND AND AIRBORNE RADIO SYSTEM

(SINCGARS) ...2
B. ALTERA® DIGITAL SIGNALS PROCESSING (DSP)

DEVELOPMENT KIT, STRATIXTM PROFESSIONAL EDITION.....3
1. Stratix FPGA4

C. SINCGARS HARDWARE RADIO4
D. GOALS ..5
E. METHOD AND STRUCTURE6

II. BACKGROUND ..9
A. FPGA OVERVIEW9

1. Altera Stratix FPGA11
B. ALTERA STRATIX DSP DEVELOPMENT BOARD13

1. Analog I/O14
2. Memory Subsystem15
3. Configuration Options15
4. I/O Interfaces16

C. DESIGN SOFTWARE TOOLS16
1. Design Entry: Simulink18
2. DSP Builder19

a. Convert Model to VHDL21
b. Synthesis21
c. Fitter22

3. Quartus II Programmer22
D. SINCGARS RT-1523C23

III. DESIGN FLOW ..29
A. APPROACH ..29
B. ON-OFF KEYING (OOK) TRANSMITTER32

1. Design33
a. Numerically Controlled Oscillator37
b. Square Wave Implementation39

C. BINARY-FREQUENCY-SHIFT-KEYING (BFSK) TRANSMITTER ..40
D. NON-COHERENT BFSK-RT43

1. Design43
F. HARDWARE IMPLEMENTATION46

1. Required Altera Blocks46
2. DSP Board Programming48

a. 8-Bit Counter49
b. OOK Transmitter50
c. BFSK Transmitter51
d. BFSK-RT51

 viii

IV. RESULTS ..53
A. SOFTWARE IMPLEMENTATION53

1. OOK Transmitter54
2. BFSK Transmitter56
3. BFSK-RT57

B. HARDWARE IMPLEMENTATION58
1. OOK Transmitter59
2. BFSK Transmitter60
3. BFSK Receiver-Transmitter61

C. COMPARISONS63
V. CONCLUSION ...65

A. SUMMARY ...65
B. CONCLUSIONS65
C. RECOMMENDATIONS66

APPENDIX A. ERRORS ENCOUNTERED AND LESSONS LEARNED69
A. DESIGN FLOW69
B. TIMING ..69
C. SUBSYSTEM ...70
D. BIT MANIPULATION71
E. SIGNAL ROUTING TAGS71
F. IP USAGE ..71

1. Altera NCO Problems72
G. IMPLEMENTATION ISSUES72

1. Software Compatibility73
2. Programming with IPs73

APPENDIX B. BFSK-RT SIMULINK MODELS75
LIST OF REFERENCES ..83
INITIAL DISTRIBUTION LIST87

 ix

LIST OF FIGURES

Figure 1. Stratix FPGA....................................11
Figure 2. Stratix Device Block Diagram (from [14])........12
Figure 3. Altera DSP Development Board....................14
Figure 4. Circuitry after DAC (from [15]).................15
Figure 5. Simplified HDL Design Flow (from [9])...........17
Figure 6. Thesis Design Flow..............................18
Figure 7. SINCGARS RT-1523C...............................23
Figure 8. SINCGARS Waveforms (from [5])...................25
Figure 9. FPGA-RT block diagram...........................30
Figure 10. OOK Waveform....................................33
Figure 11. Dual frequency OOK transmitter Model............35
Figure 12. Bus18to14 Model.................................37
Figure 13. NCO Compiler....................................38
Figure 14. Square Wave Source..............................39
Figure 15. Top Level OOK Transmitter Model.................40
Figure 16. BFSK Signal.....................................41
Figure 17. BFSK Transmitter Model..........................42
Figure 18. Non-coherent BFSK Receiver (from [21])..........43
Figure 19. Sinusoidal Pulse Detector.......................44
Figure 20. Non-coherent BFSK Receiver......................45
Figure 21. BFSK-RT Model...................................46
Figure 22. Board Configuration Window......................48
Figure 23. DSP Board Set-Up................................49
Figure 24. 8-bit Counter Oscilloscope Output...............50
Figure 25. OOK Transmitter Simulation Results..............55
Figure 26. BFSK Transmitter Simulation Results.............56
Figure 27. BFSK Receiver Simulation Results................57
Figure 28. OOK Waveform and Bit Stream.....................59
Figure 29. BFSK Waveform and Bit Stream....................60
Figure 30. BFSK-RT Transmitted and Received Waveforms......62
Figure 31. BFSK-RT Transmitted and Received bit streams....63
Figure 32. “Disable Link” Message..........................70
Figure 33. BFSK-RT Top-level Model.........................75
Figure 34. BFSK Transmitter Model..........................76
Figure 35. BFSK Receiver Model.............................77
Figure 36. Detect-0 Model..................................78
Figure 37. Integrator Model................................79
Figure 38. Bit to 14-bit Buss Model........................80
Figure 39. 18-bit to 14-bit Buss Model.....................81

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. EP1S80 Overview (from [15]).....................13
Table 2. RT-1523C Performance Data (from [20])...........24
Table 3. Manpack Performance Results (from [6])..........26
Table 4. Major BFSK-RT Design Parameters.................31
Table 5. Simulation Parameters...........................54
Table 6. Quartus II Fitter Report........................61

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ABBREVIATIONS AND ACRONYMS

ADC Analog to Digital Converter

ASIC Application Specific Integrated Circuit

BFSK Binary-frequency-shift-keying

BFSK-RT Binary-frequency-shift-keying Receiver-
Transmitter

COMSEC Communications Security

COTS Commercial-off-the-Shelf

CPLD Complex Programmable Logic Device

DAC Digital to Analog Converter

DSP Digital Signals Processing

EDA Electronic Design Automation

EDM Enhanced Data Mode

EEPROM Electrically Erasable Programmable Read-only Mem-
ory

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

FPGA-RT Field Programmable Gate Array Receiver-
Transmitter

GUI Graphic User Interface

HDL Hardware Description Language

IC Integrated Circuit

IEEE Institute of Electrical and Electronics Engineers

IIR Infinite Impulse Response

I/O Input/Output

IOE Input/Output Element

IP Intellectual Property

JTRS Joint Tactical Radio System

LAB Logic Array Block

LE Logic Element

LED Light Emitting Diode

MCTSSA Marine Corps Tactical Systems Support Activity

 xiv

MSPS Mega Samples Per Second

NCO Numerically Controlled Oscillator

NCOs Network-centric Operations

OOK On-Off Keying

PAL Programmable Array Logic

PCOs Platform-centric Operations

PLA Programmable Logic Array

PLD Programmable Logic Device

RAM Random Access Memory

RT Receiver-Transmitter

SDM SINCGARS Data Mode

SDR Software Defined Radio

SINCGARS Single Channel Ground and Airborne Radio System

SOPC System On a Programmable Chip

SRAM Static Random Access Memory

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

 xv

ACKNOWLEDGEMENTS

I’d like to thank my thesis advisors, Professors

Herschel Loomis and Frank Kragh, for dedicating time to en-

suring I approached this project in a systematic manner.

Thanks to Professor Loomis’ intricate knowledge of FPGAs

and design techniques, several difficult design problems

were quickly solved. Professor Kragh’s communication sys-

tems expertise and guidance provided me a starting point

from which to start the design and constantly dedicated

time to ensuring I understood the system that I developed.

Without their guidance, time and effort this work would

have not been possible.

I’d also like to thank Capt Rick Paradise for assist-

ing me in the understanding of communication systems and

receiver design. He dedicated much of his time to ensure I

understood the inner workings of basic RT systems so my de-

sign would be in proper working order.

Finally, I’d like to thank Capt Max Greene and the Ma-

rine Corps Tactical Systems Support Activity for their sup-

port in the form of equipment, expertise, funding and the

opportunity to work on this project.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

EXECUTIVE SUMMARY

The goal of this thesis was to implement a receiver-

transmitter that simulates the modulation and demodulation

of the SINCGARS RT-1523C. The RT was implemented on an Al-

tera® StratixTM Edition DSP development board with an on-

board Stratix FPGA. The designed RT was a non-coherent

BFSK-RT.

Descriptions of the FPGA and development board capa-

bilities are presented, to include a brief history of

FPGAs. The hardware descriptions are followed by a design

flow discussion that describes the possible ways to design

systems for implementation on the DSP board used in this

thesis. Other background topics include a discussion of

the SINCGARS RT-1523C, to include its characteristics and

most recent upgrades.

A thorough explanation of how the design was ap-

proached is presented. This document describes the proce-

dures taken, including the observed problems and solutions

to ensure the design functioned properly. The design soft-

ware tools used throughout the thesis are MATLAB®’s Simu-

link®, the Altera DSP Builder and the Quartus II programmer.

Next, the system was implemented onto hardware and

tested for software and hardware functionality. The soft-

ware simulation was conducted in Simulink and the hardware

simulation was conducted on the DSP board, using an oscil-

loscope to observe the transmitted and received waveforms

and bit streams.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

The single channel ground and airborne radio system

(SINCGARS) is currently widely used throughout the United

States Marine Corps and Army for terrestrial tactical voice

and data communications [1]. The last several years have

continued the shift in military operations away from plat-

form-centric operations (PCOs) to network-centric opera-

tions (NCOs) [2]. NCOs rely heavily on data communica-

tions, and therefore the SINCGARS has been used increas-

ingly for data communications [2]. Unfortunately, the

SINCGARS has often not been able to adequately support

these NCO data communications demands. The author, while

assigned to the U.S. Marine Corps operational forces, has

observed that this problem has become much more evident

when utilizing the SINCGARS manpack variant. The problem

can be traced back to the power and antenna differences be-

tween vehicle and manpack variants. Vehicle variants in-

clude one or two amplifiers and antennas in excess of 6

feet. The manpack variant has no power amplification and

has PRC-77 legacy antennas that are intended for short

range transmissions. Therefore, the SINCGARS manpack radio

has been found inadequate in providing dismounted troops

with satisfactory data traffic capabilities as required by

current doctrine.

The use of design software which interfaces with hard-

ware to create a software-defined design has become a more

commonplace technique for creating system solutions. One

such solution is the use of field programmable gate arrays

(FPGAs) which can be programmed using software to perform

hardware operations. This solution can allow designers to

2

examine, change, implement and test systems without working

with circuit boards, chips or other electronic parts. [3]

This thesis addresses the use of an FPGA to model,

simulate and implement the modulation of the SINCGARS ra-

dio, a binary-frequency-shift-keying receiver-transmitter

(BFSK-RT). The results of this research can be used to

analyze, modify and test BFSK-RT radio designs in order to

identify modifications that can improve the performance of

the SINCGARS radios, in particular the SINCGARS manpack.

A. SINGLE CHANNEL GROUND AND AIRBORNE RADIO SYSTEM
(SINCGARS)

NCOs involve the coordination of diverse combat units

to assemble a military capability that is greater than the

capability of any one unit. This involves sharing of in-

telligence, reconnaissance, and surveillance information,

collaborative planning, and command and control alignment —

all of which require networked communications across the

force. Therefore, the greatest demands for military radio

capabilities are in effective data transfer as part of the

greater network. At this junction in time, the military

owns equipment capable of sharing situational-awareness in-

formation and administrative reports that keep the com-

mander informed of each subordinate unit’s position and

disposition. In order to employ this equipment to its full

capability, adequate communications means are required.

Currently, the main terrestrial communications system that

is employed by the United States military for this task is

the SINCGARS. [1]

The SINCGARS has been employed in the United States

military since 1987 when it was contracted from ITT Indus-

tries. The SINCGARS was purchased to replace the aging

3

PRC-77 single-channel plain-text radio set, and it was to

provide the U.S. Armed Forces with an improved reliable

means of voice communications in the battlefield. As needs

changed through the years, so did the system. The current

SINCGARS, fielded in 1998, is capable of providing single-

channel and frequency-hopping communications for voice and

data, and it comes equipped with an integrated communica-

tions security (COMSEC) device [4]. Test of the SINCGARS

show that it is capable of providing communications in ex-

cess of 20 kilometers in a stationary position with an ade-

quate antenna [5]. However, the range of the manpack

SINCGARS receiver-transmitter unit, the RT-1523C, is re-

duced to less than one kilometer when transmitting data

[6]. This reduced range limits the ability of the radio to

effectively support data transfer in the digital battle-

field. It is due to this fact that the Marine Corps Tacti-

cal Systems Support Activity (MCTSSA) requested this thesis

explore the implementation of the radio system in an FPGA,

in order to facilitate modifications in the radio hardware

design that can improve the performance of the RT-1523C re-

ceiver-transmitter radio set. MCTSSA provided an Altera®

StratixTM Professional Edition DSP Development Kit for this

task.

B. ALTERA® DIGITAL SIGNALS PROCESSING (DSP) DEVELOPMENT
KIT, STRATIXTM PROFESSIONAL EDITION

The increased capabilities of technology and the con-

stant improvement of semiconductors continue to provide

programmable logic devices that facilitate the design and

implementation process for system solutions that require

flexible design methods. These devices allow designers to

have flexible hardware solutions, based on programmable

logic. The Altera DSP Development Kit, Stratix Edition, is

4

one such hardware solution for the communications industry.

The DSP development kit provides the necessary hardware to

develop complete system-on-a-programmable-chip (SOPC) solu-

tions using the Stratix FPGA. [3]

1. Stratix FPGA

The Stratix FPGA is the Altera Corporation solution to

requirements for faster and more powerful designs. The

SINCGARS RT-1523C has 23 application-specific integrated-

circuits (ASICs) [4]. This technology requires redesign

and manufacture of an entire ASIC to upgrade that part of

the system. In contrast, FPGA-based systems can be updated

by re-programming the logic in the FPGA. Through the use

of reprogrammable FPGAs, a designer can implement and pro-

gram the design onto an FPGA, test it and proceed to large-

scale production once the testing is concluded satisfacto-

rily. At this point, the FPGA can be added to the radio.

Since FPGAs are reprogrammable, the design can be changed

or improved at any time after fielding. It is this charac-

teristic that makes FPGAs a good tool to examine the RT-

1523C and make changes to it without having to implement

and manufacture any ASICs. The use of FPGAs in the RT-

1523C will allow the military to use commercial-off-the-

shelf (COTS) technology, an advantageous alternative due to

the large knowledge base available in the programmable

logic industry, and reduced costs of COTS acquisition and

life cycle logistical support.

C. SINCGARS HARDWARE RADIO

The RT-1523C SINCGARS radio is a non-coherent binary-

frequency-shift-keying (BFSK) hard-decision receiver [5].

The receiver performance has very little recorded analysis

in the dismounted variation and because of its ASIC-based

design, changes to the radio are difficult and variation in

5

testing is limited. Using an FPGA-based DSP board, the de-

signer can make changes to the radio architecture based on

operating conditions, therefore creating improved perform-

ance in different environments.

D. GOALS

The U.S. military has already established a program to

provide a replacement for the SINCGARS with software de-

fined radios (SDRs), which comprise the new Joint Tactical

Radio System (JTRS). Unfortunately the JTRS manpack con-

tract, cluster five of the JTRS program, was started on

July 16, 2004 and is currently in the design and develop-

ment phase with full production planned to start in late

2009 [7]. This leaves a capability gap in manpack radios

because the JTRS is not expected to reach the operating

forces until 2010. This assumption does not account for

possible program delays and the additional time required

for full fielding, typically a few years’ time span.

SDRs take advantage of programmable logic technology

to make the radios reconfigurable [7]. This same technol-

ogy can easily be used to improve the RT-1523C while the

military awaits the complete fielding of the JTRS manpack.

The purpose of this thesis is to design a non-coherent

BFSK receiver, program the FPGA with the design, test the

design, and compare the data with the experimental data of

the actual SINCGARS manpack. In conjunction with the the-

sis, “Modeling and Simulation of the Physical Layer of the

Single Channel Ground and Airborne Radio System

(SINCGARS),” by Captain Richard Paradise, USMC, MCTSSA can

use this design to evaluate any possible modifications to

the physical layer of the SINCGARS [8].

6

E. METHOD AND STRUCTURE

The focus of this thesis is implementing a non-

coherent BFSK radio using an FPGA, and improving the design

to implement the SINCGARS characteristics as much as possi-

ble.

The design process was started by first implementing

an on-off keying (OOK) transmitter. After the OOK trans-

mitter was designed, a BFSK transmitter was implemented and

a non-coherent receiver was created. The radio was de-

signed using the MathWorks Simulink® software, which inter-

faces with the Altera Quartus® II design software to program

the FPGA.

Chapter II gives a brief history of FPGAs, discusses

the Stratix FPGA and its characteristics, describes the Al-

tera DSP Development Board and its characteristics, the de-

sign software, the design flow and briefly discusses the

RT-1523C SINCGARS receiver-transmitter set.

Chapter III describes the steps taken to create the

design and program the FPGA. The chapter provides an in-

depth look at the use of the software necessary to go from

concept to testing of the BFSK system using an FPGA. The

tools discussed in this chapter include Simulink, Altera

MegaCore® and OpenCore® Plus functions, the MegaCore Com-

piler, the SignalCompiler box and the DSP Builder.

Chapter IV presents the results of the Simulink and

hardware simulations and comparisons of simulated results

with the known performance of the SINCGARS.

Chapter V presents a summary of the thesis, conclu-

sions regarding the DSP board and FPGA utility and recom-

mendations regarding the options that may be added to the

7

SINCGARS design and testing efforts when an FPGA solution

is implemented. Emphasis is placed in the suggestions for

further research and testing, as well as possible implemen-

tation alternatives and possible modifications to the pro-

posed design.

Two appendices are included, Appendix A discusses er-

rors encountered and lessons learned and Appendix B in-

cludes all the Simulink models that were created in order

to implement the FPGA-RT.

8

THIS PAGE INTENTIONALLY LEFT BLANK

9

II. BACKGROUND

This chapter discusses FPGAs, the Altera DSP develop-

ment kit, design software, design implementation and the

SINCGARS RT-1523C.

A. FPGA OVERVIEW

The history of FPGAs began with the implementation of

integrated circuits (IC) that could have their logic pro-

grammed after the ICs were manufactured. [9]

The first such IC was the programmable logic array

(PLA), which had a two-level structure of AND and OR gates

with programmable connections. As the programmable device

industry grew, PLAs were modified and programmable array

logic (PAL) devices were introduced; PALs also have a two-

level structure but only the AND array is programmable and

the OR array is fixed. PALs and PLAs are called programma-

ble logic devices (PLDs). As IC capabilities increased,

programmable logic vendors introduced complex programmable

logic devices (CPLD). CPLDs implement multiple PLDs onto a

single chip with programmable interconnections, called a

switch matrix, thereby increasing the scale of logic possi-

ble from the IC. [9]

When CPLDs were being invented, FPGAs were developed

with a different approach to achieving a large amount of

programmable logic. FPGAs have a large number of individ-

ual logic blocks that are smaller than PLDs and a large and

programmable connection network that is distributed

throughout the chip. This approach allows the designer to

maximize the use of the logic elements (LEs) available and

does not restrict use of any part of the chip. This is not

the case with CPLDs. [9]

10

In general, the differences between CPLDs and FPGAs

are architectural. As previously mentioned, CPLDs are made

of PLDs with programmable interconnections called a switch

matrix. However, a CPLD switch matrix is not capable of

achieving all possible connections, thereby reducing the

chances of 100% utilization of all on-board logic [10]. By

contrast, FPGA architecture is specifically designed to

maximize the use of all on-board logic through the use of

the fully programmable interconnections that comprise the

majority of the FPGA area. Other major differences include

the amount of on-board logic and chip size, both in favor

of FPGAs as they are larger and contain more logic ele-

ments. Neither is universally more effective than the

other, and the fact that the two leading vendors in pro-

grammable logic devices, Altera and XILINX®, sell CPLDs and

FPGAs show that consumers have applications for both de-

vices. [11] [12]

Altera and XILINX have different approaches to pro-

grammable logic products. Altera focuses on design solu-

tions. Altera Corporation not only provides customers with

devices and support which includes design software and ser-

vices, but they also provide development products that al-

low the designer to implement and test designs [3]. By

contrast, XILINX focuses on devices and support. Like Al-

tera, they provide solutions to certain ‘End Markets’, but

XILINX does not provide testing platforms [11]. This means

XILINX-based solutions are designed and created by the de-

signer, to include the implementation and testing platform.

Therefore, given an inexperienced designer or the need for

a fast design solution, Altera is a good option. However,

if the desired effect is the most effective use of a de-

vice, then XILINX provides a better option because of their

robust and varied devices with extensive support [11]. Due

to resources provided by the requesting activity, MCTSSA,

an Altera FPGA was used.

1. Altera Stratix FPGA

Current FPGA design makes FPGAs an excellent choice

for DSP solutions. In 2002, ALTERA introduced to the pro-

grammable device market their high-density Stratix FPGA,

shown in Figure 1. The Stratix FPGA provides high band-

width, on-board memory, a high density of logic elements,

DSP blocks and high performance input/output (I/O) capa-

bilities. [13]

Figure 1. Stratix FPGA.

The Stratix device achieves these qualities through

its “two-dimensional row- and column-based architecture”

[14]. The device’s internal logic array blocks (LABs),

memory blocks and DSP blocks are arranged in rows and col-

umns. Each LAB has 10 logic elements (LEs). The device

has three different types of memory with parity: M512 Ran-

dom Access Memory (RAM) blocks (576-bit dual-port memory

11

RAM), M4K RAM blocks (4,608-bit true dual-port RAM), and M-

RAM blocks (589,824-bit true dual-port RAM). These memory

blocks are located throughout the device logic array, as

shown in Figure 2. Also within the device array are two

columns of DSP blocks which can implement eight 9 X 9-bit

full-precision multipliers that can implement four 18 X 18-

bit multipliers or one 36 X 36-bit full-precision multi-

plier. The outer edges of the device have input/output

elements (IOEs) that feed I/O pins. The IOEs contain bidi-

rectional I/O buffers and registers for input, output and

output-enable signals. These features allow the device to

support numerous I/O standards and provide an interface for

external memory devices. Figure 2 shows a subsection of a

Stratix FPGA block diagram and how each block is distrib-

uted throughout the device. [14]

Figure 2. Stratix Device Block Diagram (from [14]).

12

The device that was used for this thesis was the

EP1S80B956-C6, the most powerful of the Stratix devices,

which is included in the EP1S80 DSP development board that

was provided by MCTSSA. The EP1S80 Stratix FPGA character-

istics are summarized in Table 1. [15]

Table 1. EP1S80 Overview (from [15]).

B. ALTERA STRATIX DSP DEVELOPMENT BOARD

The Altera Stratix DSP development board, shown in

Figure 3, facilitates design work. The major components

include the Stratix FPGA, analog inputs and outputs run by

analog-to-digital and digital-to-analog converters, a mem-

ory subsystem, a PLD for configuration options, an 80-MHz

on-board oscillator and various input and output inter-

faces. The input components include three pushbuttons,

eight dipswitches, and the output components include a dual

seven-segment display and two light emitting diodes (LEDs).

[15]

13

Figure 3. Altera DSP Development Board.

1. Analog I/O

The analog input and output consists of two 12-bit

analog-to-digital converters (ADC) and two 14-bit digital-

to-analog converters (DAC). The ADCs can sample at a maxi-

mum rate of 125 mega-samples-per-second (MSPS) and the DACs

convert 1 14-bit number to an analog signal every 6.06 ns.

Each ADC input circuit is DC-coupled and its output to the

FPGA is in two’s-complement format. The D/A converter box

in Figure 4. It is best modeled as an ideal current source

with output 0-20 mA, proportional to the 14-bit unsigned

binary value received from the FPGA. This current is fil-

tered by the two capacitors and resistor to pass a fre

14

quency range of approximately 16 kHz to 230 MHz. The out-

put signal maximum is 0.5 V when a 50 ohm antenna is at-

tached to the output. [15]

Figure 4. Circuitry after DAC (from [15]).

2. Memory Subsystem

The DSP board embedded memory capabilities consist of

2 megabytes of 7.5 ns synchronous 256 X 36 static random

access memory (SRAM) configured as two independent 36-bit

wide buses and a single 64-megabit flash memory device

[15]. Flash memory, or electrically erasable programmable

read-only memory (EEPROM), is a non-volatile memory that

does not require power to hold data; this kind of technol-

ogy can be re-programmed a limited number of times. There-

fore it is normally used for data that does not change [9].

By contrast, SRAM is a fast read/write memory that holds

the stored values until the memory is re-written or the

system is powered down. The arrangement of the SRAM allows

the board to support high data rates and concurrent proc-

essing by using the 36-bit buses independently. [15]

3. Configuration Options

The flash memory device allows the board to store an

on-board configuration when used in combination with the

Altera EPM7064 PLD. Since the Stratix FPGA is SRAM-based

15

16

device, configuration is required each time the system is

powered. The PLD and flash memory combination allows a de-

sign to be stored on-board. As soon as the board is turned

on, the PLD will configure the FPGA using the data stored

in the flash memory. This is called a non-volatile con-

figuration scheme. The PLD can hold two different configu-

rations, a preset factory-configuration and a user-defined

configuration. The factory-configuration is a test that

allows the user to ensure the board is working properly.

Once the user configuration has been programmed on the PLD,

the use of jumper JP18 selects the user-defined configura-

tion. [15]

4. I/O Interfaces

The majority of the DSP board is dominated by multiple

I/O headers and various connectors that can be used to add

expansion devices and analytical devices. The I/O inter-

faces are: 90 digital evaluation I/O pins, two Mictor-type

connectors for logic analyzer debugging, a Texas Instrument

board expansion interface, two 40-pin I/O headers for Ana-

log Devices Corporation converters and a prototyping area

that allows other devices to be added to the board. All of

these interfaces are directly connected to FPGA pins, and

can be used to extract signals out of the FPGA for analysis

or debugging; specific assignments can be found in the

EP1S80 development board data sheet. [15]

C. DESIGN SOFTWARE TOOLS

Given the complexity of PLDs and FPGAs, it is neces-

sary to discuss the software necessary to program these de-

vices with a design. For this purpose, in the mid-1980s,

the Institute of Electrical and Electronics Engineers

(IEEE) sponsored the development of a hardware description

language (HDL) that could document and model a system in a

hierarchical manner. The HDL that was created was the Very

High Speed Integrated Circuit (VHSIC) HDL, also known as

VHDL. As mentioned earlier, VHDL was initially intended to

be a “documentation and modeling language” [9], but after

the creation of VHDL synthesis tools by various commercial

vendors, VHDL surpassed its initial purpose. These synthe-

sis tools use VHDL files to create a database that the fit-

ter in turn uses to map the circuit design onto the spe-

cific FPGA, or other target device. The components created

depend on the device that needs to be programmed and most

synthesis tools allow the user to provide information re-

garding the device that will be used. [9]

The tool that makes the transition from software de-

signs to hardware implementations are device fitters. A

fitter performs what is known as place-and-route, it maps

the database from the synthesis onto the device that will

hold the design. The device map can then be analyzed for

timing, thereby completing the design flow. This is the

basic idea behind HDL design flow, and Figure 5 shows a

simplified block diagram of a HDL design flow. [9]

Figure 5. Simplified HDL Design Flow (from [9]).

The Quartus II software is the Altera Corporation tool

that takes a design from concept to hardware implementa-

tion; it includes tools that range from design entry to

programming tools. Altera also has the DSP Builder which

links the Quartus II software to the MathWorks

MATLAB®/Simulink software to create a DSP Builder design

flow. The DSP Builder allows designers to implement a de-

17

sign in a user friendly graphical environment in Simulink

[16]. Figure 6 shows the design flow used in this thesis.

Figure 6. Thesis Design Flow.

1. Design Entry: Simulink

Simulink is a design program that allows users to im-

plement designs graphically. In this thesis, it was used

for design entry and simulation. Simulink uses block li-

braries that contain graphical representations of systems

that model controls, signal processing, communications and

18

19

other time-varying systems. The DSP blocks from the DSP

Builder can be used in the Simulink environment to create a

model of the desired design, which can then be used to con-

tinue the design flow. [17]

Simulink also allows the creation of hierarchical de-

signs. This is done by creating subsystems within the sys-

tem model. The use of subsystems simplifies the design be-

cause a system solution can then be broken down into sub-

system solutions that can be implemented several times into

the same model. This feature allows the designer to create

more complicated designs that are organized using subsys-

tems within a model. [16]

Simulink’s simulation abilities allow the designer to

troubleshoot designs and ensure the system functions prop-

erly before implementation. It is this property that makes

Simulink a good design entry choice for DSP designs. Since

Altera blocks are used in Simulink models, the design can

be designed, simulated, troubleshot and validated before

implementing it in hardware. [17]

2. DSP Builder

The Simulink block libraries contain many predefined

configurable blocks that can be used to create a wide vari-

ety of system designs. The Altera DSP Builder is a tool

that is installed into Simulink, using the MATLAB console,

which adds the Altera DSP Builder library to the Simulink

libraries; the DSP Builder is necessary because it acts as

a link between the Simulink and Quartus II software. The

DSP Builder library consists of many blocks ranging from

arithmetic operations to the Altera MegaCore functions.

These blocks must be used in designs that are intended for

hardware implementation because the DSP Builder cannot con-

20

vert Simulink blocks into VHDL, only DSP Builder blocks.

The usage of DSP Builder blocks allows the design to be

simulated and tested in Simulink to ensure proper system

behavior. [17]

The DSP Builder can perform all design implementation

tasks from the Simulink environment using the Quartus II

software in the background. The DSP Builder does this

through the SignalCompiler block which must be used in all

DSP Builder models. The steps taken by the SignalCompiler

in order to program the DSP board with a model are: 1 –

convert model to VHDL, 2 – synthesis, 3 – fit system to

Quartus II and 4 – board programming. This design flow al-

lows programming of the device before doing any analysis of

the system, which is done in Simulink, not Quartus II. Un-

fortunately, the use of the MegaCore functions does not al-

low the SignalCompiler to perform board programming because

of MegaCore usage limitations. [17]

The Altera MegaCore functions are called intellectual

property (IP) blocks. IPs provide the designer with com-

plex, ready-to-use functions that have been optimized for

implementation on Altera devices. Using IPs improves sys-

tem development time and enhances the performance of the

system because IPs are made for use on Altera devices.

Since IPs are copyrighted functions, to use IPs a designer

must obtain an evaluation license. When evaluation IPs are

used, the designer can implement, evaluate, and test the

design in software and hardware. However, there are re-

strictions to IP use if a full license is not purchased.

[19]

In order to use IPs with an evaluation license, the

hardware has to maintain a connection to the Quartus II

21

software via a joint actions test group cable. This is

called the tethered mode. An IP implementation in hardware

will run indefinitely if the hardware and the Quartus II

software maintain communications. If the hardware imple-

mentation is not linked to the Quartus II software

(untethered mode), the IP will only function for a limited

time, after which it will be deactivated and the device

will have to be programmed again. Therefore, the board

programming must be performed from by the Quartus II in

tethered mode programmer and not by the SignalCompiler pro-

grammer. [19]

a. Convert Model to VHDL

In order to begin the DSP Builder part of the de-

sign flow, the SignalCompiler block shown in Figure 6, must

be used. Once the SignalCompiler block is double clicked

the compiler is started. The compiler automatically checks

the accuracy of the model and is ready to begin the model

to VHDL conversion. VHDL conversion is necessary because

the Quartus II synthesis tools cannot perform synthesis on

a model file; the synthesis tool requires VHDL to perform

synthesis. [9]

b. Synthesis

The Synthesis part of the design flow is actually

performed by the Quartus II software via the DSP Builder,

so it is performed from the Simulink environment. Synthe-

sis is the conversion of the VHDL into components that can

be assembled in the desired hardware [9]. In the Quartus

II software, the synthesis step in the design flow “builds

a single project database that integrates all the design

files in a design entity or project hierarchy” [18]. The

software uses the database throughout the rest of the syn-

thesis and is updated until the database contains the opti-

22

mized project which is then used for the rest of the design

flow. As the database is updated and modified, the soft-

ware checks for syntax and flow errors. The Quartus II

synthesis also ensures the project is efficient by creating

assignments of resources on the device being used and mini-

mizing gate count. During synthesis, the project is also

evaluated for timing requirements and modified to meet

them. [18]

c. Fitter

The Quartus II Fitter performs place-and-route

using the database developed during synthesis, matching

logic and timing requirements with the resources available

onboard the target device. After the logic is assigned to

a particular cell, the fitter selects the best path and pin

connection assignments to make within the device. The fit-

ter does this using the parameters established by the user,

and then optimizes the design. If the design is not feasi-

ble an error message is produced and the designer must re-

design. [18]

The Quartus II Timing Analyzer runs by default

and reports various timing data. This data can then be

used to validate the timing parameters for the design [9].

3. Quartus II Programmer

The design flow is completed when the project is com-

piled and downloaded onto the Altera device. This is done

by the Quartus II Programmer. After the Quartus II Fitter

step of the DSP Builder design flow is completed, the com-

piler creates a programming file that the Quartus II Pro-

grammer uses to program a device. At this point, the hard-

ware has been programmed with the developed design and is

ready for real-time testing in a physical environment. [18]

D. SINCGARS RT-1523C

The SINCGARS RT-1523C, shown in Figure 7, has been in

service in the U.S. military since the late 1990s and was

upgraded by the RT-1523E, a version that has not been fully

fielded yet. The RT-1523C is currently the main communica-

tions asset for the U.S. Marine Corps, therefore it was se-

lected as the SINCGARS radio variant to examine. [1]

Figure 7. SINCGARS RT-1523C.

The RT-1523C is a non-coherent binary-frequency-shift-

keying receiver-transmitter (BFSK-RT) that is capable of

performing data and voice communications [5]. The RT has

many important characteristics, shown in Table 2, but the

most relevant properties to this thesis are the modulation

and bandwidth (channel spacing) [20].

23

Table 2. RT-1523C Performance Data (from [20]).

ITT implemented improvements to the waveform to im-

prove data-throughput. In order to satisfy backward com-

patibility, the new waveform is the enhanced data mode

(EDM) that is used in combination with the old SINCGARS

data mode (SDM). The modification to the waveform made the

EDM distinct from the SDM and causes a radio operating in

EDM to reject an SDM message and vice versa. As Figure 8.

shows, the throughput was drastically improved from 1.5

seconds to 0.432 seconds per data-waveform. [5]

24

Figure 8. SINCGARS Waveforms (from [5]).

The characteristics of the RT-1523C make it a good

tool for voice communications, but weak for data communica-

tions. Unfortunately, most if not all of the experimenta-

tion that has been performed on the radio has been con-

ducted on units using vehicle mounts or the OE-254 antenna,

an impedance matched antenna designed to operate in the 30-

88 MHz range in a frequency-hopping mode [5] [6]. Both op-

tions provide long ranges and facilitate testing and im-

prove results by maximizing range. The standard manpack

radio is the AN/PRC-119C which consists of the RT-1523C,

the 10-foot AS-4266/PRC (pole collapsed or extended) an-

tenna and the 3-foot AS-3683/PRC (tape collapsed or ex-

tended) antenna [20]. This particular configuration of the

SINCGARS has very little published test data regarding data

communications.

25

In August 2004, MCTSSA conducted a field study of the

AN/PRC-119C performance using the standard manpack equip-

ment. Communications with a probability of bit error of

greater than 10-4 was considered unreliable and communica-

tions with a probability of bit error of less than 10-4 was

considered reliable. Both the pole and tape antennas were

tested in a collapsed and extended variation with the RT-

1523C at medium and high power. Table 3 summarizes the re-

sult and recommendations in the report. [6]

Table 3. Manpack Performance Results (from [6]).

As can be noted from Table 3, the data shows that the

AN/PRC-119C manpack needs better range. The most effective

configuration was with the 10-foot antenna fully extended

transmitting at full power. This option is not acceptable

because of the cumbersomeness of conducting foot-mobile op-

erations with a 10-foot antenna on the RT and because oper-

ating the RT at full power makes it easier for the enemy to

conduct signals intelligence. [1]

26

27

After reviewing the results of the MCTSSA tests, it is

obvious that the current version of the SINCGARS is incapa-

ble of adequately supporting data transfer for foot-mobile

units. It is the low range of the AN/PRC-119C manpack that

this thesis hopes to assist in solving. With the develop-

ment of a BFSK-RT FPGA, MCTSSA can further their research

efforts and have a way to test possible modulation varia-

tions of the RT-1523C.

This chapter presented a brief FPGA and DSP board

overview, the design software tools are described and the

RT-1523C is presented. This information will serve as a

basis for understanding the design flow discussed in the

following chapter.

28

THIS PAGE INTENTIONALLY LEFT BLANK

III. DESIGN FLOW

This chapter describes the design steps taken to im-

plement a BFSK-RT into an FPGA.

A. APPROACH

In order to properly model the SINCGARS, some research

was done to identify the actual type of receiver the RT-

1523C implements. The RT-1523C receiver was determined to

be a non-coherent BFSK receiver after reading Hamilton’s

“SINCGARS System Improvement Program (SIP) specific radio

improvements” article. [4]

29

)
Further research on the RT was performed to determine

the bit-rate and operating frequencies (bR ()1 0,f f . The U

Marine Corps Technical Manual, Intermediate and Depot Main-

tenance, SINCGARS states that the RT-1523C operates at an

intermediate frequency of 12.5 MHz, and transmits data at

16,000 bits per second (bps). [20] Assuming the RT-1523C

performs orthogonal signaling, then the operating frequen-

cies are . The throughput

is less than this in EDR mode due to the need to transmit

parity symbols, but the bit rate (including data and parity

bits) is always 16 kbps [20].

.S.

= =0 112.492 MHz and 12.508 MHzf f

To simplify understanding and visualization of a suc-

cessful implementation, this design was constructed with

sufficient bandwidth to identify the waveforms on an oscil-

loscope, but note should be taken of the discrepancy in

bandwidth availability in the RT-1523C. Figure 9 shows a

basic block diagram of the digital communication system

that was designed.

Figure 9. FPGA-RT block diagram.

It is important to note that the design of the RT does

not include any filtering, except for that inherent in the

receiver’s correlator. The initial request from MCTSSA was

to program the DSP board with the hardware behavior of the

RT-1523C. Figure 9 shows the suggested FPGA-RT block dia-

gram. The channel in the FPGA-RT is a coaxial cable. The

filtering inherent in the receiver is ideal for the AWGN

case. Non-AWGN environments (e.g. with interferers) might

motivate inclusion of additional filtering. Such addi-

tional filtering was not addressed in this design.

The design of the FPGA-RT model was approached in a

stair-step manner. The first step was to determine the de-

sign parameters. Certain design decisions were made based

on software restrictions, but most of the parameters were

set to facilitate visual analysis and understanding of the

system. These parameters are shown in Table 4. For exam-

ple, assuming the SINCGARS performs orthogonal signaling,

then and = 16 kbpsbR ∆ = 16 kHzf . Therefore the two inter-

mediate frequency (IF) symbol frequencies are

30

=0 12.492 MHzf and =1 12.508 MHzf . If these relatively

close frequencies were used, then the visual identification

of either waveform would have been difficult. The FPGA in-

cludes an 80 MHz crystal oscillator, therefore, this was

chosen as the clock frequency [15]. In order to achieve

better visual identification of the two IF symbol frequen-

cies, a data frequency of 1.25 Mbps was chosen.

Table 4. Major BFSK-RT Design Parameters.

clockf 80 MHz

0f 5 MHz

1f 10 MHz

bT 800 ns

bR 1.25 Mbps

2n nBW 7.5 MHz

The second step was to create a transmitter, using the

given parameters. To simplify the design, a square wave

was designed to simulate an alternating input bit-stream of

0s and 1s. As mentioned before, the Altera DSP Builder can

only convert Altera Simulink blocks into VHDL, not Math-

Works Simulink blocks. Therefore only Altera Simulink

blocks can be implemented in hardware. In the Simulink en-

vironment, creating an OOK, FSK or BFSK transmitter is very

simple because Simulink has modulation blocks that can per-

form these tasks. Since the Mathworks Simulink blocks can-

not be used and Altera Simulink blocks do not include these

functions, the BFSK transmitter had to be created from

scratch. The first step taken to create the BFSK transmit-

ter, in order to improve the designer’s understanding of

the receiver-transmitter (RT) system, was to build an OOK

transmitter. [16] [17]

31

32

Once the OOK transmitter was built, it was modified to

add two OOK signals at different symbol frequencies to pro-

duce a BFSK signal, completing the transmitter portion of

the RT design.

The implemented receiver is a non-coherent BFSK quad-

rature receiver. This was designed via a basic Simulink

model of a non-coherent BFSK receiver-transmitter that mod-

els the RT-1523C modulation using Altera Simulink blocks.

At this point, the Simulink model was input to the DSP

Builder design flow using the SignalCompiler. The Signal-

Compiler then performed three steps: converted the design

model to VHDL, synthesized the VHDL and fit the design into

the FPGA using Quartus II. The SignalCompiler has a fourth

step that programs the DSP board but since the design used

an IP, the device programming had to be done from the Quar-

tus II software. After the model was used to create a

hardware programming file, the Quartus II software was used

to program the FPGA using the tethered OpenCore feature.

Once the design was programmed onto the FPGA, hardware

testing and evaluation was conducted. [17] [19]

B. ON-OFF KEYING (OOK) TRANSMITTER

One of the basic waveforms used in digital communica-

tions is the on-off keying (OOK) waveform. The name is a

description of what the signal represents. The presence

and absence of a sinusoid pulse denotes a binary one or

zero respectively, as shown in Figure 10; thus the ‘on-off’

name. The keying part of the name is a carryover from the

days when teletype required a key to send dots and dashes.

Since the OOK waveform is easy to create and can easily be

converted into a BFSK waveform, it makes sense to create a

working OOK generator that can be modified to create a BFSK

transmitter. [22]

Figure 10. OOK Waveform.

1. Design

An OOK waveform is the product of a sinusoid and the

waveform ()d t where and

. The OOK transmitter was constructed

using the Altera numerically-controlled oscillator (NCO)

MegaCore which creates a sinusoid, an Altera increment

block, an Altera extract bit block and an Altera NOT block,

which create a square wave, and an Altera product block

[17]. Figure 11 shows the model of the OOK dual transmit-

ter that produces complementary OOK signals at 5 MHz and 10

MHz. The signal at point 1 in Figure 11 is a si-

nusoid produced by the Altera NCO MegaCore version 2.2.2;

the inputs to the NCO are the clock enable, reset and a

frequency dependent phase increment constant which the NCO

uses to create the desired sinusoid. The signal at point 2

is

() (), {0,n n
n

d t b p t nT b
+∞

= −∞

= − ∈∑ 1}

()
≤ <⎧

= ⎨
⎩

1 if 0

0 otherwise

t T
p t

=0 5 MHzf

()1 d t− . The signal at point 3 is ()() ()01 cos 2A d t fπ− t .

33

The signal at point 4 is ()() ()01 cos 2A d t ftπ A− + . Simi-

larly, the signal at point 5 is () ()1cos 2Ad t ft Aπ + where

. The OOK transmitter was designed this way to

facilitate the transition to a BFSK transmitter.

=1 10 MHzf

34

2

1

3

4

5

Figure 11. Dual freque

ncy OOK transm

35
i

Adders

tter Model.

36

One of the key ideas to be noted in Figure 11 is the

signed- to unsigned-number conversion done by the adders

after the square wave and sinusoid multiplication. This

was necessary because of the DSP board DACs. They cannot

convert signed numbers to analog [15]. The DAC inputs must

be non-negative [15]. Given this restriction, it is neces-

sary to convert the signed values to unsigned values and

then reduced in order to successfully transmit a waveform.

The signal reduction is performed by 18- to 14-bit busses

that remove four bits from the 18-bit signal. This is done

by creating an 18- to 14-bit buss that extracts the seven

most significant bits (MSBs) and the seven least signifi-

cant bits (LSBs) from the 18-bit signal and the 14 bits are

combined to make a 14-bit signal. Figure 12 shows the 18-

to 14-bit model. This approach was selected because remov-

ing either the most or least significant bits cause the

system to truncate the waveform and produced peaks at the

points of discontinuity in the waveform. Removing the bits

in the middle of the signal removed these peaks and allowed

for smooth sinusoidal signals to be routed to the output.

Another noteworthy feature is the data-ready output

(pin 1 in upper right of Figure 11). The NCOs require a

certain amount of clock cycles for start-up, and the data-

ready signal is asserted once the NCOs are ready to trans-

mit the sinusoids [23]. The data-ready output (pin 1) can

be used to debug timing errors.

Figure 12. Bus18to14 Model.

a. Numerically Controlled Oscillator

The Altera NCO is an Altera IP which is included

with the Altera software [17]. If the designer finds it

useful, a license maybe purchased from the Altera website

and the MegaCore can be used in hardware implementations

and products. The NCO requires the use of the Altera Sig-

nalCompiler block in order to create, compile, and operate

the oscillator. Once the SignalCompiler has been added to

the top-level of the model, any of the Altera MegaCores can

be used in the model. [19]

37

The NCO parameters are established using the Al-

tera NCO Compiler, a graphic user interface (GUI) that al-

lows parameters to be set for the NCO. The Parameterize

window has three tabs: Parameters, Implementation and Re-

source Estimate. The Parameters and Implementation tabs

are the most important because they determine the specific

behavior of the NCO. The Resource Estimate tab allows the

designer to note how many of the FPGA resources the NCO may

use. Figure 13 shows the Parameters tab of the NCO com-

piler. [23]

Figure 13. NCO Compiler.

38

The most important part of the compiler is the

Generated Output Frequency Parameters section in the Pa-

rameters tab (see Figure 13). In this section the Clock

Rate and Desired Output Frequency are set. [23]

b. Square Wave Implementation

The technique used to create the bit stream was

to implement a square wave with a period equal to twice the

bit duration. Each square wave period represents two bits,

a 0 and a 1. Since the Altera blockset does not contain a

square wave generator, one was created by using an incre-

ment block and an extract bit block [17]. The increment

block is a counter. The extract bit block extracts the

counter’s MSB.

The increment block was used due to timing is-

sues. The design uses a global sampling time. This was

done to reduce the chances of timing errors or delays that

in turn could cause synthesis errors. This issue is dis-

cussed more in depth in Appendix A.

The square wave was implemented by extracting the

MSB of an up counter. This caused the square wave to

change from 0 to 1 once the counter reached half its maxi-

mum value. Given this, the bit rate was determined by the

size of the counter. In Figure 14, the increment block

acts as a 7-bit counter that can count up to 128 therefore

the bit rate (Rb) is 1 bit per 64 clock cycles or 1.25 MHz.

39

Figure 14. Square Wave Source.

In order for a Simulink model design to be con-

verted to VHDL, the model has to establish the input and

output signals using input and output busses. The input

and output ports, i.e., the ovals with numbers inside them

seen in Figure 14, allow models to be made into subsystems

that can be used a part of a larger model. In order to use

a subsystem in the Signal Compiler, the subsystem has to

have a “SubSystem AlteraBlockSet” mask. Figure 15 shows

the OOK dual transmitter top level model, including a modu-

lator mask representing the subsystem of Figure 11. [17]

Figure 15. Top Level OOK Transmitter Model.

C. BINARY-FREQUENCY-SHIFT-KEYING (BFSK) TRANSMITTER

A binary-frequency-shift-keying (BFSK) signal is a

representation of 1s and 0s using sinusoidal pulses at two

different frequencies as represented in Figure 16 [22].

Given this fact, the conclusion can be drawn that the com-

40

bination of two complimentary OOK signals with distinct

tone frequencies creates a BFSK signal.

Figure 16. BFSK Signal.

By examination, it is intuitive to simply add the two

waveforms to create a BFSK waveform. Figure 17 shows the

model of the BFSK transmitter. The signals at points A and

B are the complementary OOK signals. The sum signal at C

is the BFSK signal. The signal at D is the unipolar BFSK

signal.

41

B

A

C

D

42

Figure 17. BFSK Transmitter Model.

D. NON-COHERENT BFSK-RT

The purpose of a non-coherent receiver is to evaluate

which sinusoid is stronger at the receiver at a given time

without using the carrier phase to detect the signals. The

two most common non-coherent BFSK receiver designs are the

energy detector, also known as the quadrature receiver, and

the envelope detector. For this thesis, the quadrature re-

ceiver was implemented because of its simplicity and low

cost. [21]

The BFSK quadrature receiver can be implemented as

seen in Figure 18 and operation of a BFSK quadrature re-

ceiver is discussed in more detail in Reference 21.

Figure 18. Non-coherent BFSK Receiver (from [21]).

1. Design

The conceptual block diagram was implemented using Al-

tera Simulink blocks to make sinusoidal pulse detectors as

seen in Figure 19. Two instances of the sinusoidal pulse

detector were used to make the non-coherent BFSK receiver.

43

44

Figure 19. Sinusoidal Pulse Detector.

Figure 20. Non-coherent BFSK Receiver.

The last step of the design was to combine the trans-

mitter and receiver into one BFSK-RT design. The action of

combining the models was a simple cut and paste operation

that combined the models from Figure 20 and Figure 17 to

create Figure 21. In software simulation, this designed

worked properly and displayed no problems. This was not

the case in hardware, and will be discussed in the BFSK-RT

sub-section of the HARDWARE IMPLEMENTATION section.

45

Figure 21. BFSK-RT Model.

F. HARDWARE IMPLEMENTATION

The hardware implementation became the most challeng-

ing step of the design process, mostly due to lack of

knowledge of software and IP intricacies. Every design was

implemented into hardware, mostly as a troubleshooting

technique, to validate the design. The observations from

each of the hardware implementations will be presented in

the Results chapter. The following sections will discuss

the steps taken to implement the designs. Errors and les-

sons learned can be found in Appendix A.

1. Required Altera Blocks

It was stated earlier that in order to use any of the

IPs, it is necessary to include a SignalCompiler block in

the top-level model. Similarly, to program the DSP board,

46

47

the DSP-Board block has to be added to the top-level model.

The Altera DSP-Board library also includes multiple blocks

that represent the features available on the DSP board.

For example, in Figure 21, there are two gold circles that

represent the ADC and DAC and two EVALIO OUT blocks that

assign certain signals to IO pins on the board. [17]

Some of these blocks were observed to have no func-

tionality in the Simulink simulator, like the push buttons

and the dip switches, but they are necessary in the design

in order to power and control the system in hardware.

Other blocks were observed to have effects on the simula-

tion, for example the ADC and DAC blocks modify the signal

if the signal routed through them is not in the proper for-

mat.

The most important block for programming the system

onto the board is the board block. When the block is dou-

ble clicked the board configuration window is displayed,

Figure 22, which allows the designer to set certain board

parameters. If this window is not modified, the default

configuration will be used. The default configuration does

not set a clock for the DACs, therefore the DACs will not

transmit any signals out of the board. An additional pa-

rameter that can be set from the board configuration window

is the global reset pin. If the global reset is not set,

Quartus II selects any free pin and the system cannot be

reset by the user. In this implementation, the global re-

set used was pin AK13 which is push button 1. This allowed

for user control of the system reset during hardware

evaluation. [17]

Figure 22. Board Configuration Window.

2. DSP Board Programming

Once the necessary blocks were in place to convert the

model to VHDL, the programming of the board was started.

The programming started with a counter implementation to

ensure the input and output ports were working properly,

and to verify that the timing of the system was as ex-

pected. Once a working model was programmed and the func-

tionality and use of the board was established, the three

designs were implemented: the OOK transmitter, the BFSK

transmitter and the BFSK-RT. Figure 23 shows a picture of

the hardware set-up.

48

49

Figure 23. DSP Board Set-Up.

a. 8-Bit Counter

The first design to be programmed onto the board

was an 8-bit counter. This exercise provided an example of

how the board uses the clock to determine frequencies. Us-

ing equation: = =
80 MHz

2 2
clock

counter N

f
f

N
, from Appendix A,

yields a frequency of 312.5 kHz for the 8-bit counter be-

cause it uses the onboard crystal oscillator which operates

at 80 MHz. When the MSB is extracted from an 8-bit

counter, the extracted bit output creates a square wave

with a frequency of 312.5 kHz, the same frequency as the

counter. The counter operation displayed the expected fre-

quency output, and ensured the parameters of the design

were correct. The output oscilloscope screen capture can

be seen in Figure 24 below. Although the oscilloscope

measured frequency for the counter output, top waveform, is

incorrect, the correct frequency can be calculated from the

period using the equation
1

f
T

= , where 3.2T sµ= [22].

Figure 24. 8-bit Counter Oscilloscope Output.

b. OOK Transmitter

Once the board was determined to be working prop-

erly, the OOK transmitter design as shown in Figure 11 was

implemented into hardware. The OOK implementation provided

some good learning points regarding the use of the dip

switches and the push buttons. All the board switch inputs

are low-asserted, therefore they drive a logic-0 when on

and a logic-1 when off [15]. Using these characteristics,

a control arrangement was established and used through out

the design. Since the push buttons drive a logic 0 only

when pressed, push button one (SW1) in combination with a

NOT block was used as the system reset. The dip switch was

50

51

used as the system enable, which allows the system to be

turned on and off at any given time.

c. BFSK Transmitter

After the OOK transmitter was implemented and

tested, the BFSK transmitter was implemented as a trouble-

shooting step. This implementation was completed without

any errors, since the only difference between the BFSK and

OOK transmitters is the rearrangement of the adders to add

the high- and low-frequency signals onto the same waveform

and then convert them into unsigned-integer values.

d. BFSK-RT

The BFSK-RT hardware implementation proved to be

one of the most challenging implementations due to design

structure. The design approach was to use each design to

build the next design. In software, this approach was able

to simulate without any problems. The hardware implementa-

tion did not encounter any problems until the transmitter

and receiver models were combined. In software simulation,

Simulink does not give an error when two sources have the

same exact parameters in one design. This is not the case

in hardware. The SignalCompiler would not compile two NCOs

with the same parameters. Therefore, the design was al-

tered to include two NCOs instead of four, as pictured in

Figure 21, thereby eliminating redundant NCOs.

This chapter discussed the design steps taken to im-

plement a BFSK-RT into an FPGA. The observed results are

presented in the following chapter.

52

THIS PAGE INTENTIONALLY LEFT BLANK

53

IV. RESULTS

This chapter provides a summary of the results of the

simulations and the hardware implementations throughout the

design process. The chapter is broken down into two main

sections, and each section discusses a major design task

and the results of the software and hardware implementa-

tions.

A. SOFTWARE IMPLEMENTATION

Throughout the entire design process, simulations and

evaluation of the design were made to ensure the steps

taken were correct and would lead to a working BFSK-RT.

This section discusses the observed behavior of the OOK

transmitter, the BFSK transmitter and the BFSK receiver and

how the intermediate observations affected the final de-

sign.

Although the Altera software contains multiple analy-

sis tools, the only software analysis tool that was used

was the Simulink simulator. The Simulink simulator and its

scope block provided the most basic and easy-to-understand

analysis method that could be performed without having to

switch software or incorporate hardware for testing. [24]

Since a receiver-transmitter radio set must first be

able to send and receive a waveform, the analysis of the

output waveform was the method used to ensure the design

worked properly. This was done by using the Simulink scope

block. The scope block receives a signal and plots it

against the time index. The output of the scope is what

would be expected on the screen of an oscilloscope if it

where to be used to acquire a single sweep of a waveform.

The only difference is that in the Simulink environment,

54

the single sequence size is set by the user as the total

simulation time. Using this voltage-against-time plot, the

design could be inspected to ensure the system was operat-

ing as expected. Table 5 lists the parameters used for all

the software simulations. [24]

Table 5. Simulation Parameters.

fclock 80 MHz
f0 5 MHz
f1 10 MHz
Simulation Time 0 to 350
Sample Time 1 sample (12.5 ns)
Symbol Time (Ts) 64 samples
Symbol Rate (Rs) 1.25 MSPS
BWn2n 7.5 MHz
NCO Phase Dithering Level 4
NCO implementation Small ROM

1. OOK Transmitter

Upon completion of the OOK transmitter, an analysis of

the waveform was performed. As mentioned before, an OOK

transmitter performs modulation by transmitting a signal to

represent a binary one and no signal to represent a binary

zero [22]. Figure 25 shows the system output waveforms and

the transmitted bit stream of the created OOK transmitter.

Figure 25. OOK Transmitter Simulation Results.

By simple visual comparison, it can be noted that the

waveforms behave properly, the 10 MHz signal is present

only during transmitted ones and the 5 MHz signal is pre-

sent when the data transmitted is a zero [22]. Another

significant observation is the frequency of the waveforms.

The 10 MHz waveform has twice as many cycles as the 5 MHz

waveform, as would be expected. It was during this step in

the design process that the NCO parameters were explored

and tested. The results of these iterations led to the de-

cision to use the 5 and 10 MHz frequencies with a clock

frequency of 80 MHz. These parameters provided clear and

identifiable waveforms. Additional parameters including

phase dithering and implementation algorithm were also

tested and examined and it was determined that the phase

dithering affects the frequency response of the waveform

and the implementation algorithm affects the amount and

55

type of resources used by the FPGA. The small ROM method

uses the least logic elements, but the most memory re-

sources. Further details on resource usage based on imple-

mentation algorithm may be found in the Stratix Device

Handbook, Reference 14. [23]

2. BFSK Transmitter

The BFSK transmitter simulation produced a distinct

binary waveform that alternated the 5 MHz and 10 MHz wave-

forms into one signal. Figure 26 displays the resulting

BFSK waveform, along with the corresponding bit stream.

Figure 26. BFSK Transmitter Simulation Results.

It was during this simulation that the effects of

pipelining, adding a memory element to the output of a

function to reduce timing errors, were noticed. The imple-

mented transmitter design incorporates pipelining after all

major arithmetic functions; the NCOs, the multipliers after

the NCOs, the adder that combines the signals and the adder

56

that converts the AC waveform into a DC waveform. The

pipelining incorporates an overall delay of four clock cy-

cles, which was noted when comparing the transmitted bit

stream and received bit stream in Figure 27. The transmit-

ted waveform has been shifted by four samples, as would be

expected since each level of pipelining adds a delay to the

data.

3. BFSK-RT

The BFSK-RT implementation provided satisfactory re-

sults when simulated. The transmitted waveform was the

same as seen in Figure 26, and the behavior of the BFSK-RT

can be seen in Figure 27.

Figure 27. BFSK Receiver Simulation Results.

By visual examination of Figure 27, it can be noted

that the receiver has a one bit delay, 64 samples, creating

a shifted received waveform. This behavior is expected be-

57

cause the integrators in the detection stage of the re-

ceiver integrate over a bit period. At system start-up,

the integrators have no data to determine the data received

until a bit period has passed. After the first bit period

has passed, the integrators determine what data was re-

ceived and the receiver can then detect the value of the

received signal. This configuration forces the transmitted

and received waveforms to be shifted by Tb, or one bit.

One of the most interesting observations of the BFSK-

RT simulation was the received signal appearance. As can

be noted from Figure 27, the receiver system input from the

ADC is not a BFSK waveform. The waveform should be a

two’s-complement sinusoid with an amplitude of , or 2048,

because the MSB is the sign bit. The ADC should not detect

a value, but rather a waveform which it converts to a 12-

bit digital value. Instead, the ADC block acts as a 12-bit

signed integer bus that causes the ADC to truncate the in-

put to 12 bits, therefore the signal is improperly dis-

played in the scope. This discrepancy was examined in the

hardware to determine if the block implementation in the

Altera library was incorrect or if the ADC actually input

the observed waveform into the receiver, and it was deter-

mined that the system received the proper waveform.

112

B. HARDWARE IMPLEMENTATION

Upon successfully designing the BFSK-RT, the task of

programming the design onto the FPGA was started. In order

to get familiar with the board and the programmer, each de-

sign was implemented and tested on the FPGA. The following

sections discuss the observations made during the hardware

testing. The analysis was done using the Tektronix

TDS3012B two-channel color digital phosphor oscilloscope.

58

1. OOK Transmitter

Figure 28 below shows the oscilloscope capture of the

OOK waveform and the transmitted bit stream. It can be

noted that the OOK signal behaves exactly as expected, with

a sinusoid present when a binary-1 is transmitted and no

sinusoid present when a binary-0 is transmitted.

Figure 28. OOK Waveform and Bit Stream.

One noteworthy evaluation tool implemented in the OOK

transmitter and used through out the hardware implementa-

tions was the use of the DSP board IO pins. Since the DACs

convert 14-bit data to analog signals, a one-bit output

contained insignificant power and was lost in the noise.

To alleviate that, the IO pins were used to analyze the bit

streams and not waste the DACs on one-bit outputs. The IO

59

pin output is 3.3 V for a “1” and 0 V for a “1”, which is

easily read on an oscilloscope. [15]

2. BFSK Transmitter

Since the OOK transmitter hardware implementation was

uneventful, the BFSK transmitter implementation was easily

programmed and evaluated. Figure 29 below shows the ob-

served waveforms.

Figure 29. BFSK Waveform and Bit Stream.

As expected, the waveform has a 10 MHz symbol when a

binary-1 is transmitted and a 5 MHz symbol when a binary-0

is transmitted. This is also the first time a distinct

time delay can be noticed in the waveform. The actual de-

lay in the transmitter system is approximately 62.5 ns

which is attributed to the pipelining which adds 4 samples

60

or 5 to the transmitter delay and electromagnetic

propagation. This was validated when the oscilloscope cap-

ture is zoomed to a 40 ns scale and the waveform and bit

stream time differences were compared. [21]

0 ns

3. BFSK Receiver-Transmitter

The overall design of the BFSK-RT is a resource inex-

pensive design, as Table 6 shows. Important benchmarks are

the LE use at 2%, memory bits at 7%, M4Ks at 37%, and DSP

block use at 22%, which means the device still has plenty

of resources to incorporate more functions to the BFSK-RT

so it can be modified to more effectively simulate the RT-

1523C. [14]

Table 6. Quartus II Fitter Report.

Total logic elements 1,721 / 79,040 (2 %)
Total LABs 209 / 7,904 (2 %)
Logic elements in carry chains 617
User inserted logic elements 0
Virtual pins 0
I/O pins 57 / 692 (8 %)
Clock pins 1 / 20 (5 %)
Global signals 13
M512s 0 / 767 (0 %)
M4Ks 136 / 364 (37 %)
M-RAMs 0 / 9 (0 %)
Total memory bits 557,056 / 7,427,520 (7 %)
Total RAM block bits 626,688 / 7,427,520 (8 %)
DSP block 9-bit elements 40 / 176 (22 %)
Regional clocks 0 / 16 (0 %)
Fast regional clocks 0 / 32 (0 %)
SERDES transmitters 0 / 152 (0 %)
SERDES receivers 0 / 152 (0 %)
Maximum fan-out node clock
Maximum fan-out 1110
Total fan-out 10537
Average fan-out 5.40

61

The final design consists of a transmitter that sends

a continuous stream of alternating ones and zeroes that are

then transmitted from the DAC via a SMA cable to the ADC,

the receiver input. The received waveform is then proc-

essed through the non-coherent quadrature receiver and the

system output is the received bit stream. Figure 30 shows

the sent and the received BFSK waveforms.

Figure 30. BFSK-RT Transmitted and Received Waveforms.

Since the sent and received signals are essentially

the same signal just observed at the output of the trans-

mitter and the input of the receiver, the delay is negligi-

ble. When observed in the oscilloscope at a scale of 10

ns, the delay from sent to received waveform is approxi-

mately 15 ns. This delay can be attributed to electromag-

netic propagation. Figure 31 below shows the oscilloscope

display of the sent and received bit streams.

62

Figure 31. BFSK-RT Transmitted and Received bit streams.

As expected, the bit streams have the same data rate

of 1.25 MHz and the received bit delay is one full ,

, as Figure 31 shows.

bT

800 ns

C. COMPARISONS

Due to the distinct difference between software and

hardware evaluation, it is worthwhile to annotate any dif-

ferences between the two analyses. The software simula-

tions were used for design evaluation and assistance in de-

termining the expected behavior of the system. After the

system behavior was determined, it facilitated identifying

possible problems in hardware implementation. This ap-

proach allowed for the successful implementation of all the

designs and for the identification of various errors which

are discussed in Appendix A.

63

64

The major difference in the two simulation methods was

the BFSK waveform appearance at the receiver/ADC. The

hardware showed that the sent and received BFSK waveforms

had the same appearance and frequencies, whereas the soft-

ware simulation resulted in a received waveform that was a

truncated signal and not a sinusoid. After software exami-

nation, it was determined that the problem was not the

hardware ADC, but rather the software Altera ADC block. In

software the signal needs to be routed through the Altera

DAC and ADC blocks. The ADC block expects the signal

routed through it be a 12-bit signed integer or an 11-bit

unsigned integer, it cannot take a waveform (a signal that

is analog in real systems) and convert it to a 12-bit two’s

complement digital value. Instead, the ADC acts as a 12-

bit bus. This behavior causes the received signal to have

the incorrect appearance, although the ADC and DAC perform

the proper operations in hardware. [15]

The two analysis methods in combination provided a

good way to create and analyze the FPGA BFSK-RT, and pro-

vided various possibilities for continued work and further

analysis as will be discussed in the next chapter.

65

V. CONCLUSION

This chapter provides a summary of the thesis and

draws conclusions regarding the BFSK transmitter-receiver

implemented in an FPGA. Suggestions and recommendations

are given regarding further research and changes to the de-

sign created.

A. SUMMARY

The goal of this thesis was to provide the first step

towards developing a solution to the data transfer problem

in the current manpack version of the SINCGARS. MCTSSA ap-

proached NPS with a request to create and implement the

current manpack radio, the RT-1523C in an FPGA. In re-

sponse, this thesis has implemented a non-coherent BFSK re-

ceiver-transmitter system in an FPGA.

This thesis gives a thorough description of FPGAs, the

Altera DSP development board which has an Altera Stratix

FPGA, and how the FPGA design software works. Once the ba-

sis for FPGA design was presented, the task of designing

the RT was described step by step including noted software

and hardware issues that affected the design process. The

system was then simulated and analyzed both in software and

hardware to ensure proper functionality. The results are

presented in the Results chapter.

B. CONCLUSIONS

The most significant conclusion is that the Altera de-

velopment board is a very capable design tool that can suc-

cessfully be used to implement a non-coherent BFSK system.

The free-trial method of using the Altera IPs allows de-

signers to program devices and test them in hardware at no

66

additional cost. Also noteworthy is the large amount of

design, testing, and debugging options available on the

board.

The fact that the board was able to hold the design

with small resource usage means that the board can be used

to implement much more than the modulation. The only re-

source that was more than 10% used was the M4K memory

blocks at 37%. The board can easily hold the coding and

even the frequency-hopping circuit. This makes the devel-

opment board an excellent tool to attempt to improve the

performance of the SINCGARS, perhaps including size and

weight reduction.

C. RECOMMENDATIONS

There are many possibilities for follow-on work.

MCTSSA would like to improve the RT-1523C operating range

when using the standard 3- and 10-foot antennas. This the-

sis did not examine any other hardware possibilities save

the wire connection from the transmit to receive ports.

One option is to change the design parameters of this

design to send and receive SINCGARS signals. The FPGA-RT

can then be evaluated for bit error rate performance and

range. The results can then be compared to the RT-1523C

performance and range.

Another possible continuation of this thesis would be

to conduct error analysis on the performance of this imple-

mentation using the standard RT-1523C antennas. Depending

on performance, modifications can be done to the design to

determine the most efficient use of the antennas to support

the desired results from the RT.

67

A third option is to conduct bit error analysis on

this design and modify it to reduce errors and as a culmi-

nation, compare the FPGA performance to the RT-1523C re-

corded performance. The efficiency and usefulness of this

option can further be enhanced by including the use of the

3- and 10-foot RT-1523C antennas.

Lastly, additional work can be done in the actual de-

sign of the receiver-transmitter implementation. The

SINCGARS can perform frequency-hopping, RS coding and de-

coding. None of these properties were implemented in the

current design and further work can be done to incorporat-

ing these functions onto the current design.

68

THIS PAGE INTENTIONALLY LEFT BLANK

69

APPENDIX A. ERRORS ENCOUNTERED AND LESSONS LEARNED

This appendix discusses the errors made and lessons

learned during the design process.

A. DESIGN FLOW

Although the design flow displayed in Figure 6 was

predominantly used, there were also two other designs flows

that were used but found ineffective. One of these design

flows was using Simulink for design entry and the DSP

Builder for model to VHDL conversion, and then performing

all the synthesis, fitting and programming in the Quartus

II software; this was not used often because two different

programs had to be used and the Quartus II electronic de-

sign automation (EDA) tool does not convert the VHDL to

schematic files for design modifications. The other possi-

ble design flow was the DSP Builder design flow. The main

reason the DSP Builder design flow was not used was because

the DSP Builder cannot program a device with files that

contain intellectual property (IP) in the design. The dif-

ference between the DSP Builder design flow and the design

flow used is that the design flow used can program using

IPs via the use of the Quartus II programmer from the Quar-

tus II software. [17][18]

B. TIMING

The timing errors encountered in this design were

mostly due to lack of understanding of the Altera blockset.

The SignalCompiler does not allow the use of multiple sam-

ple times. If the design contained sample times discrepan-

cies, an error was displayed during compilation. This

problem was corrected by using a global sample time, and

using the Altera increment/decrement block to create dif-

ferent frequencies that are multiples of the system clock

frequency. The counter frequency can be determined using

the equation: = =
80 MHz

2 2
clock

counter N

f
f N

, where N is the number

of bits. [17]

C. SUBSYSTEM

The subsystem feature of Simulink, which permits hier-

archical designs, is also used by the DSP Builder. To fa-

cilitate this option, the DSP Builder library has an HDL

subsystem block that allows the designer to create an Al-

tera subsystem. One of the difficulties is that the HDL

subsystem block is linked to the library, so in order to

modify the block, it must be unlinked from the library.

When the prompt to unlink is displayed, shown in Figure 32,

it seems as if an error has been made. But that is not the

case. The designer must disable the link in order to mod-

ify the block and use it in the design. Once the subsystem

has been created using the HDL subsystem block, it must not

be re-linked to the library. If the new subsystem is re-

linked it changes the HDL subsystem in the library, which

is not desired. [17] [24]

70

Figure 32. “Disable Link” Message.

Another option is to create a subsystem by selecting

the part of the model that will be a subsystem, right

clicking in the selected area and selecting the “Create

subsystem” option. Once the subsystem has been created,

the Altera subsystem mask can be added and the SignalCom-

piler will recognize the subsystem. If this option is

used, care should be taken to use the Altera busses and

ports so the subsystem can be converted to VHDL by the com-

piler, otherwise the design will not be able to compile.

[17] [24]

D. BIT MANIPULATION

71

1

The design of the transmitters had one particular is-

sue of concern, the output signal format. In order to

transmit the created signal, the DSP board requires that

the signal be unsigned. The solution used was to add the

value to the signal, N being the number of bits, in

order to convert the signed integer to an unsigned integer.

Next, the new signal that was one bit larger than the pre-

vious signal was reduced to the 14 bits required by the

DAC. This was done by removing the middle bits, thereby

keeping the smoothness of the curve at the extremities. [9]

[15]

− −12N

E. SIGNAL ROUTING TAGS

A significant design event was the discovery of the

DSP Builder compatibility with the Simulink GOTO and FROM

signal routing tags [17]. The GOTO and FROM tags are sig-

nal routing blocks that permit signals used in a design to

simplify the schematic [24]. They proved to be very useful

because they reduced the amount of lines in the design mak-

ing it less cluttered and easier to examine.

F. IP USAGE

As mentioned in the DESIGN FLOW chapter, the combina-

tion of the transmitter and receiver designs caused prob-

lems during hardware implementation and required the re-

moval of redundant NCOs. This issue brings up an important

point in IP use in designs; if the IP is a source that can

be used for multiple purposes, as is the NCO, do not imple-

ment the same IP multiple times in a design. This causes

compilation problems, errors, and prevents device program-

ming. Since most IPs are coders, decoders, filters and

transforms this issue is not a problem with most IPs, but

in case errors occur at compilation, the problem may be the

use of redundant IPs. [17]

1. Altera NCO Problems

The first iteration of the BFSK-RT contained a total

of four NCOs, two in the transmitter and two in the re-

ceiver. The NCOs were actually two pairs of 5 MHz and

 oscillators, one pair to create the transmitted

waveform and the other to correlate the received waveform.

This design created hierarchy errors when compiling the de-

sign. The cause is the method Quartus II uses to fit de-

signs into hardware. Since two NCOs have the same exact

parameters, the fitter attempts to merge them. The error

occurs because of the location of the NCOs in the design;

they are in different branches of the hierarchy. Since the

fitter first merges the NCOs and then attempts to route the

signals, the compilation has errors trying to determine

where to place the new combined hierarchy and the compila-

tion fails. [17]

10 MHz

G. IMPLEMENTATION ISSUES

Most of the implementation errors and concerns were

derived from IP use in the design. Since the NCO IP was

used to create and detect the BFSK signal, several problems

were encountered when trying to implement the design into

hardware because of software compatibility and DSP Builder

programming limitations.

72

73

1. Software Compatibility

The problem came from the NCO IP and the compatibility

of the IP with the Quartus II version that was included

with the DSP development kit. When IPs were initially cre-

ated, they were designed to evaluate design in software

only. To use IPs in hardware testing, a license had to be

requested from Altera. After the system testing was com-

pleted, the license had to be purchased to implement the

design in stand alone solutions. Last year, all the IPs

and Quartus II were updated to take out a licensing step,

and allow designers to perform software and hardware test-

ing with the same license. In order to take advantage of

these properties, Quartus II version 4.2 and DSP Builder

version 2.2 are required. The DSP development kit was pur-

chased with Quartus II version 3.1 and DSP Builder version

1.2, a combination that is not capable of performing hard-

ware testing. These problems were solved by upgrading both

the DSP Builder and the Quartus II software, with some help

from the Altera helpdesk. [19]

2. Programming with IPs

Once the IP compatibility issue was solved, the next

issue that was addressed was actually programming the FPGA.

The SignalCompiler runs from within the Simulink software

and has the ability to compile, synthesize, fit and program

the design onto the DSP board. This capability is limited

to non-IP designs though. In order to program designs that

contain IPs, it is necessary to program the board using the

Quartus II programmer so the FPGA can be operated in the

OpenCore tethered mode. Once this limitation was deter-

mined, the solution was to compile the design usinjg the

SignalCompiler and then program the FPGA using the Quartus

II programmer. [19]

74

This Appendix discussed the errors encountered and

lessons learned during the design flow. Appendix B dis-

plays the models that comprise the FPGA BFSK-RT.

APPENDIX B. BFSK-RT SIMULINK MODELS

This appendix contains all the Simulink models for the

BFSK-RT. Although all the majority of these models are in

the body of the thesis, this appendix provides all the mod-

els that were used in the design in one place for easy ref-

erence.

Figure 33. BFSK-RT Top-level Model.

75

76
Figure 34. BFSK Transmitter Model.

Figure 35. BFSK Receiver Model.

77

Figure 36. Detect-0 Model.

78

Figure 37. Integrator Model.

79

Figure 38. Bit to 14-bit Buss Model.

80

Figure 39. 18-bit to 14-bit Buss Model.

81

82

THIS PAGE INTENTIONALLY LEFT BLANK

83

LIST OF REFERENCES

1. U.S. Department of Defense, U.S. Marine Corps, MCRP 6-
2.2.2 Talk II – SINCGARS: Multiservice Communications
Procedures for the Single-Channel Ground and Airborne
Radio System, pp. ii - I-14, GPO, Washington, DC,
1996.

2. Dan Caterinicchia with Matthew French, “Network-

centric warfare: Not there yet,” Federal Computer
Week, June 9, 2003.

3. “DSP Development Kit, Stratix Edition,”

[http://www.altera.com/products/devkits/altera/kit-
dsp_stratix.html], last accessed on March 05, 2005.

4. “SINCGARS: Evolution to Revolution,” ITT Industries,

pp. 1-6, Ft Wayne, IN, 1997.

5. Bradley J. Hamilton, “SINCGARS System Improvement Pro-

gram (SIP) specific radio improvements,” Tactical Com-
munications Conference, pp. 397-406, 1996.

6. Max Green, “SINCGARS Signal Output Power Test: Test

Report – DRAFT,” p. 3, MCTSSA, Camp Pendelton, CA, Au-
gust 18, 2004.

7. “Joint Tactical Radio System – JTRS,”

[http://jtrs.army.mil/index.htm], last accessed on
March 05, 2005.

8. Richard Paradise, “Modeling and Simulation of the

Physical Layer of the Single Channel Ground and Air-
borne Radio System (SINCGARS),” Master’s thesis, Naval
Postgraduate School, 2005.

9. John F. Wakerly, Digital Design: Principles and Prac-

tices, Prentice Hall, NJ, 2001.

10. Michael Barr, "Programmable Logic: What's it to Ya?"

Embedded Systems Programming, pp. 75-84, June 1999.

84

11. “Xilinx Home,”
[http://www.xilinx.com/xlnx/xil_prodcat_landingpage.js
p?sSecondary-
NavPick=null&sGlobalNavPick=PRODUCTS&iLanguageID=1],
last accessed on April 14, 2005.

12. “Altera Home,” [http://www.altera.com/], last accessed

on May 31, 2005.

13. “Stratix Devices,”

[http://www.altera.com/products/devices/stratix/stx-
index.jsp], last accessed on May 31, 2005.

14. “Stratix Device Handbook Vol. 1-2,” Technical Reports

S5V1-3.2 – S5V2-3.3, Altera Corp., San Jose, CA, Sep-
tember 2004.

15. “Stratix EP1S80 DSP Development Board Data Sheet,”

Technical Report DS-STXDVBD-1.2, Altera Corp., San
Jose, CA, July 2003.

16. “Simulink 6.2,”

[http://www.mathworks.com/products/simulink/], last
accessed on March 11, 2005.

17. “DSP Builder User Guide,” Technical Report UG-

DSPBUILDER-3.0, Altera Corp., pp. 1–1 — 5-22, San
Jose, CA, August 2004.

18. “Quartus II Handbook Vol. 1-4,” Technical Reports

qii5v1-3.1 – qii5v4-1.0, Altera Corp., San Jose, CA,
December 2004.

19. “Application Note 320: OpenCore Plus Evaluation of
Megafunctions,” Technical Report AN-320-1.2, Altera
Corp., pp. 1-5, San Jose, CA, June 2004.

20. U.S. Department of Defense, U.S. Marine Corps. TM

5820-45&P/1-1 Volume I, U.S. Marine Corps Technical
Manual, Intermediate and Depot Maintenance, Single
Channel Ground and Airborne Radio System (SINCGARS),
pp. 1-3 – 3-131, GPO, Washington, DC, 1997.

21. Bernard Sklar, Digital Communications: Fundamentals

and Applications, 2d ed., pp. 2-250, Prentice Hall,
NJ, 2001.

85

22. Martin S. Roden, Analog and Digital Communication Sys-
tems, 5th ed., pp. 62-369, Discovery Press, Los Ange-
les, CA, 2003.

23. “NCO Compiler: MegaCore Function User Guide,” Techni-

cal Report UG-NCOCOMPILER-2.3, Altera Corp., pp. 1-1 –
A-6, San Jose, CA, June 2004.

24. “Using Simulink, Version 6,” Technical Report Using
Simulink, The Mathworks Inc., pp. 1-1 — 12-34, Natick,
MA, 2005.

86

THIS PAGE INTENTIONALLY LEFT BLANK

87

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

3. Marine Corps Representative

Naval Postgraduate School
 Monterey, California

4. Director, Training and Education, MCCDC, Code C46
 Quantico, Virginia

5. Director, Marine Corps Research Center, MCCDC, Code

C40RC
 Quantico, Virginia

6. Marine Corps Tactical Systems Support Activity (Attn:

Operations Officer)
Camp Pendleton, California

7. Frank Kragh

Naval Postgraduate School
Monterey, California

8. Herschel Loomis

Naval Postgraduate School
Monterey, California

9. Clark Robertson

Naval Postgraduate School
Monterey, California

10. Nathan Beltz

Naval Postgraduate School
Monterey, California

11. Capt Max Green

Marine Corps Tactical Systems Support Activity
Camp Pendleton, California

88

12. Capt Juan Svenningsen
Marine Corps Systems Command
Quantico, Virginia

13. Capt Richard Paradise

Marine Corps Systems Command
Quantico, Virginia

	I. INTRODUCTION
	A. SINGLE CHANNEL GROUND AND AIRBORNE RADIO SYSTEM (SINCGARS
	B. ALTERA® DIGITAL SIGNALS PROCESSING (DSP) DEVELOPMENT KIT,
	1. Stratix FPGA

	C. SINCGARS HARDWARE RADIO
	D. GOALS
	E. METHOD AND STRUCTURE

	II. BACKGROUND
	A. FPGA OVERVIEW
	1. Altera Stratix FPGA

	B. ALTERA STRATIX DSP DEVELOPMENT BOARD
	1. Analog I/O
	2. Memory Subsystem
	3. Configuration Options
	I/O Interfaces

	C. DESIGN SOFTWARE TOOLS
	1. Design Entry: Simulink
	2. DSP Builder
	a. Convert Model to VHDL
	b. Synthesis
	c. Fitter

	Quartus II Programmer

	D. SINCGARS RT-1523C

	III. DESIGN FLOW
	A. APPROACH
	B. ON-OFF KEYING (OOK) TRANSMITTER
	Design
	a. Numerically Controlled Oscillator
	b. Square Wave Implementation

	C. BINARY-FREQUENCY-SHIFT-KEYING (BFSK) TRANSMITTER
	D. NON-COHERENT BFSK-RT
	1. Design

	F. HARDWARE IMPLEMENTATION
	1. Required Altera Blocks
	2. DSP Board Programming
	a. 8-Bit Counter
	b. OOK Transmitter
	c. BFSK Transmitter
	d. BFSK-RT

	IV. RESULTS
	A. SOFTWARE IMPLEMENTATION
	1. OOK Transmitter
	2. BFSK Transmitter
	3. BFSK-RT

	B. HARDWARE IMPLEMENTATION
	1. OOK Transmitter
	2. BFSK Transmitter
	3. BFSK Receiver-Transmitter

	C. COMPARISONS

	V. CONCLUSION
	A. SUMMARY
	B. CONCLUSIONS
	C. RECOMMENDATIONS

	APPENDIX A. ERRORS ENCOUNTERED AND LESSONS LEARNED
	A. DESIGN FLOW
	B. TIMING
	C. SUBSYSTEM
	D. BIT MANIPULATION
	E. SIGNAL ROUTING TAGS
	F. IP USAGE
	Altera NCO Problems

	G. IMPLEMENTATION ISSUES
	1. Software Compatibility
	2. Programming with IPs

	APPENDIX B. BFSK-RT SIMULINK MODELS
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

